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Several kinds of walks on complex networks are currently used to analyze search and navigation in different
systems. Many analytical and computational results are known for random walks on such networks. Self-
avoiding walks(SAW'’s) are expected to be more suitable than unrestricted random walks to explore various
kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks,
characterized by a degree distributi®k) ~k™”. In the limit of large networkgsystem sizeN— ), the
average numbes, of SAW’s starting from a generic site increasesudswith u=(k?/(k)—1. For finiteN, s,
is reduced due to the presence of loops in the network, which causes the emergence of attrition of the paths.
For kinetic growth walks, the average maximum length increases as a power of the system sie:
~N¢, with an exponent increasing as the parameteris raised. We discuss the dependencexain the
minimum allowed degree in the network. A similar power-law dependence is found for the mean self-
intersection length of nonreversal random walks. Simulation results support our approximate analytical

calculations.
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I. INTRODUCTION been found to be ultrasmall, in the sense that the mean dis-

tance between sites increases with the networkISigeower

Many natural and artificial systems have a network structhan logN [19].
ture, where nodes represent typical system units and edges Social networks form the substrate where dynamical pro-
represent interactions between connected pairs of uniteesses such as disease propagation and information spread-
Thus, complex networks are currently used to model severang take place. These networks have the property of being
kinds of real-life systemgsocial, biological, technological, searchable—i.e., peop{aodes in a netwonkcan direct mes-
economi¢ and to study different processes taking place orsages through their network of acquaintances to reach a dis-
them [1-3]. In recent years, new models of complex net-tant specific target in only a few stef)-232. Itis clear that -
works have been designed to explain empirical data in seyin€ structure of such networks will play an important role in
eral fields. This is the case of the so-called small-wgay ~ these dynamical processes, which are usually studied by
and scale-free networkig], which incorporate various as- means of_ s_tochastlc dynamics and random walks. Several
pects of real systems. These complex networks provide Zggagr?glitzlzz ?:1 rc(:’jlonr?r?enc:ti\(l)vr?"\jatk?n di?f%@iglr?);ggt\évg:(osr;[ﬁ)vne
i e derig opagca el lo snabie O provesseg73-23, In s contxt, 1 known tat o
48 . . ' processes, such as navigation and exploratory behavior are
%, and random spreading of informati¢®,10. They have

. : neither purely random nor totally determinisfi2z6] and can
been also employed to study statistical physical problems asg gescribed by walks on grapf7,2§.

percolation[6,11] and cooperative phenomeftt2,13. Self-avoiding walks(SAW’s) can be more effective than

In a scale-fre¢SF) network the degree distributio®(k),  ynrestricted random walks in exploring a network, since they
wherek is the number of links connected to a node, has &annot return to sites already visited. This property has been
power-law decayP(k)~k™. This kind of networks have used by Adami@t al.[28] to define local search strategies in
been found in social systenjd4], for protein interactions scale-free networks. However, the self-avoiding property
[15], in the interne{16], and in the World Wide Wepl7]. In  causes attrition of the paths, in the sense that a large fraction
both natural and artificial networks, the exponentontrol-  of paths generated in a stochastic manner have to be aban-
ling the degree distribution is usually in the range 2<<3  doned because they are overlapping. This can be a serious
[3,18. The origin of such power-law degree distributions limitation to explore networks with pure SAW's.
was addressed by Barabasi and Al&it who argued that SAW'’s have been traditionally used to model structural
two ingredients are sufficient to explain the scale-free charand dynamical properties of macromolecuf28,3d. They
acter of many real-life networks, namely: growth and prefer-are also useful to characterize complex crystal strucfi@8s
ential attachment. They found that the combination of bothand to study critical phenomena in lattice modgg]. Uni-
criteria yields nonequilibrium SF networks with an exponentversal constants for SAW’s on regular lattices have been dis-
y=3. One can also study equilibrium SF networks, definectussed by Privmart al. [33]. In our context of complex
as statistical ensembles of random networks with a givemetworks, the asymptotic properties of SAW’S have been
degree distributiorP(k) ~ k™ [3], for which one can analyze studied recently in small-world network84].
several properties as a function of the expongnESF net- Here we study long-range properties of SAW’s on equi-
works display the so-called small-world effect, and they havdibrium scale-free networks and discuss the “attrition prob-

1539-3755/2005/11)/0161038)/$23.00 016103-1 ©2005 The American Physical Society



CARLOS P. HERRERO PHYSICAL REVIEW E1, 016103(2005

lem.” The number of surviving walks to a given lengitis
obtained by an approximate analytical procedure, and the
results are compared with those obtained from numerical
simulations. In particular, we find that the number of surviv-

ing walks aftern steps scales as a power of the system size C A
N. We note that the term “length” is employed throughout
this paper to indicate th@imensionlessnumber of steps of B

a walk, as usually done in the literature on netwdr&ps

The paper is organized as follows. In Sec. Il we give some
definitions and concepts related to SAW's, along with details g1, 1. schematic diagram showing a nonreversal random walk
of our computational method. In Sec. lll we calculate theof |engthn=5 on the realization of a random graph. Open and solid
number and end-to-end separation of SAW's(imcorre-  circles represent unvisited and visited nodes, respectively. The start-
lated scale-free networks. In Sec. IV we analyze the lengthing node is indicated by a larger circle. The nonreversal condition
at which nonreversal random walks intersect themselves illows in principle for the nextsixth) step three possible nodes
these networkgself-intersection lengjh and in Sec. V we (denotedA, B, andC). The self-avoiding condition excludes noGe
calculate the average attrition length of kinetic growthfor the sixth step. For a nonreversal SAW one chooses among nodes
SAW’s, at which they cannot continue without violating the A, B, andC. If C is selected, then the walk stops. For a kinetic
self-avoidance condition. The paper closes with some congrowth walk, one chooses or B.
clusions in Sec. VI.

These walks were studied to describe the irreversible growth
of linear polymers[36] and will allow us to consider the
“attrition length” for a walk on a given networlsee Sec. V.

A self-avoiding walk is defined as a walk along the bondsNote that kinetic growth walks are less sensitive to attrition
of a given network which can never intersect itself. The walkthan nonreversal SAW'’s, since in the former the walker al-
is restricted to moving to a nearest-neighbor site during eacivays escapes whenever a way exists.
step, and the self-avoiding condition constrains the walk to We consider SF networks with degree distributiBtk)
occupy only sites which have not been previously visited in~ k™. They are characterized, apart from the exponeand
the same walk. the system sizé&\, by the minimum degrek,, which affects

The simplest procedure to obtain SAW’s consists just inmarkedly some characteristics of SAW'’s in these networks
generating ordinary random walks and stop when they arrivésee below. We assume thaP(k)=0 for k<<k,. Our net-
at a node already visited. A problem with this sampling al-works are uncorrelated, in the sense that degrees of nearest
gorithm in regular lattices is the exponentially rapid attrition neighbors are statistically independent. This means that the
for long walks, since the probability of amstep walk being joint probability P(k,k’) fulfills the relation[3]
self-avoiding behaves for large as €™, where\ is the

II. BASIC DEFINITIONS AND METHOD

so-called attrition constari85]. Due to this limitation, more kk’

sophisticated schemes based on Monte Carlo sampling, have P(kK') = Wp(k) P(k’). 1)
been employed to generate SAW’s with the correct weight

and to obtain ensemble averages of several quaniiigls For the numerical simulations we have generated net-

This has allowed, for example, the modeling of the equilib-works with several values oy, ky,, and N. To generate a
rium statistics of linear polymers in dilute solutions. In gen-network, once we define the number of noddg, with de-
eral, for networks including nodes with different degreesgreek, we ascribe a degree to each node according to the set
(contrary to usual regular latticessampling by using simple {N,} and then connect at random ends of lifgiing a total
random walks introduces a bias in the weight of differentof L=%,kN,/2 connectionswith the conditions thati) no
SAW’s. two nodes can have more than one bond connecting them
One can also consider kinetically grown SAW'’s, which and(ii) no node can be connected by a link to itself. We have
can be more adequate to analyze dynamic processes. Sudhecked that networks generated in this way are uncorre-
walks are well suited to study, for example, search or navifated; i.e., they fulfill Eq.(1). All networks considered here
gation processes on networks, where they are assumed ¢ontain a single component; i.e., any node in a network can
grow step by step in a temporal sequence. In the followinge reached from any other node by traveling through a finite
we will consider two kinds of growing walks. The first kind number of links. For each set of parametéys kg, N), we
will be “nonreversal” self-avoiding walkg35]. In these considered different network realizations, and for a given
walks one randomly chooses the next step from among theetwork we selected at random the starting nodes for the
neighboring nodes, excluding the previous one. If it happenSAW’s. For each considered parameter set, the total number
that one chooses an already visited node, then the walk stojp generated SAW’s amounted to about %0°.
(see Fig. 1 These walks will allow us to study the “self- For regular lattices, the numbey, of different SAW’s
intersection length{see Sec. Y. The second kind of walks starting from a generic site has an asymptotic dependence for
considered here are kinetic growth wall&§], in which one large n [33]: s,~n""1u", whereI is a critical exponent
randomly chooses the next step among the neighboring urwhich depends on the lattice dimension andis the so-
visited sites and stops growing when none are availablecalled “connective constant” or effective coordination num-
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ber of the considered latticg87]. In general, for a lattice (K% n-1
with connectivity ky, one hasu<k,—1. This parametep Sﬁ('@(@ - 1) : (5)
can be obtained as the limit
s, Then, the connective constaat, for N— o« is given by
= lim—. (2) 2
w=limo = % 1 (6)

The connective constant depends upon the particular topol-
ogy of each lattice and has been determined very accuratelfhis is consistent with the fact that uncorrelated networks are
for two- and three-dimensional lattic§35. locally tree like and the ratigk?)/(k) is the average degree

For Poissonian and scale-free networks the number aff a randomly chosen end node of a randomly chosen link
SAW’s of lengthn depends on the considered starting nod€3]. For SF networks withy<3, u diverges as\—, as a
of the network. In the sequel we will cai, the average consequence of the divergence @Ff). For y>3, we can
number of SAW’s of lengtin—i.e., the mean value obtained approximate the average values in ). by replacing sums
(for eachn) by averaging over the network sites and overby integrals and find
different network realizationgfor given vy, kg, andN). For
Erdds-Rényi random networks with Poissonian distribution L = kOLZ_ 1 7)
of degrees, one heﬁd:<k>” [34], and therefore the connec- ” y=-3

tive constant isu=(k). In connection with this, we note that Note that the ratics,/s,_; does not depend on for sys-
for a Bethe |atticgor Cayley treg with connectivityko, the o sizeN— o0, This is eqbivalent to assume that nodes in
number of SAW's is given bg"=ko(ky=1)"", and one has  gitterent steps of a nonreversal random walk are different.
meL=Ko~1. This means, in other words, that the probability of finding
loops withn’<n in an n-step walk is negligible. For finite
i networks, however, there will appear loops of any §&2€,
lll. GENERAL CHARACTERISTICS OF SAW's introducing corrections to the number of SAW’s, agdwill
A. Number of walks be lower than given by Ed5). These corrections will be of
, . ordern/N for n/N<1. The effects of this reduction in the
We calculate first the average numbey, of different ,,her of random SAW's in scale-free networks will be
n-step unrestricted walks starting from a node chosen at ransonsidered in Secs. IV and V.

dom. One trivially has;=(k). To calculater, for n>1, one As indicated above, the number of SAW's on regular lat-
needs the degree distribution for nodes at which one arriveg.es scales for larga ass,~n~Lu", whereT is a critical
following a random edge. Thus, given a generic node and @ynonent which depends on the lattice dimendlorand one
link starting on it, we calQ(k) the degree distribution for the ,s1=1 forD>4 [33,39. For the SF networks studied here
other end of the link. The probability of reaching a node with,,e find s,~ ", indicating thatl'=1, the same exponent as

connectivityk is proportional tok; therefore, for regular lattices in many dimensions.
k
Q(k) = @P(k), ©) B. End-to-end separation

where(k) in the denominator is a normalization factor. Then, ~FOr walks on regular lattices, one usually considers an
the average number of two-step random walks is given b nd-to-end Euclidean distance. Our SF networks, however,
r,=ry(K)q, where the subscrip® indicates that the average (i;::sij?rem(e: aenr:j dat(t)”;;g'2t:n§;;i5020;;egrfvg;stlr"ls’Svlgenvé'tlI
value is taken with the probability distributid(k). We find P

5 . . . works as a function of the walk length, the separation
r,=(k?) [average values without subscripts are taken with th%etween two nodes being the number of links along the
degree distributiorP(k)]. Forn>2 we haver,=r,_1(k)q and

shortest path connecting them. In Fig. 2 we present the av-

then erage separatiofd,) from the nth node in a SAW to the
(K \m1 starting one(n=0) for SF networks withy=3, k,=3, and
fn:<k><@> . (4) several sizedN. This average separatidd,,) increases first

linearly with n and finally saturates to a finite value that

We have checked that this expressionifpand those given depends on the system size. This is logical if one takes into
below for SAW’s coincide with those derived by using a account that these networks are locally tree like and for the
generating function for the degree distributif8,38. first steps the minimum separation between nadasd 0 is

We now calculate the average numisgpf different self-  d,=n. As n increases, there appear shorter ways connecting
avoiding walks ofn steps starting from a node taken at ran-nodesn and 0, and finallyd,) becomes independent aof
dom in uncorrelated networks. We will first consider the caserhis saturation for relatively small values ofis consistent
n/N—0 (thermodynamic limit For n=1, one hass;=(k).  with the small average separation between pairs of nodes
For n>1 we take into account that each-1)-step walk (diametey in this kind of networks. In fact, it is known that
arriving at a node with degrek gives rise tok—1 n-step  the diameter increases slowly asNAInIn N for y=3 and
walks. Thus, we have,=s,_;(k—1)q, which yields even more slowly as InIN for y<<3[19]. The limit of (d,))
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stop when they try to visit a node already visited in the same
walk. The number of steps of a given walk before intersect-
ing itself will be called the “self-intersection length” of the
walk and will be denotedi.

To obtain the mean self-intersection lendth of these
walks, we will calculate the probability that a walk stops at
stepn (<N). Let us consider for the moment nodes with a
given degre&k. The average number of nodes with degkee
visited aftern steps is

<dp>

2l g 'Y = 3 J
/ k=3 Vie=nQ(K), ®)
. / . . . . and the average number of those yet unvisited is
o 2 4 6 8 10
U= N¢= Vi = NP(k) - nQ(K). 9)

Then, the probability of reaching in stepan unvisited node
is u, kU, and that of finding one already visited vg (k
ing one, for kinetically grown SAW'’s on scale-free networks with _ K K g y g (

v=3 andky=3. Symbols correspond to different system sizes. From Z)V.k' Th!s s due to the fact that a. visited nogle
bottom to topN=2.1x 10%,9.6x 1%, 7.7x 10* and 6.2x 10°. Dot- possible links to reach it, as two of its connections are not
ted lines are éuidés to the éye. Y ' ' available because they were employed earlier: one for an

incoming step and one for an outgoing step. Therefore, the
probability p,, of finding in stepn a visited node with any
degree is

FIG. 2. Average separation between tite node and the start-

for largen in our SAW'’s is lower than the diameter of the
considered networks, because nodes with lafgérave a
higher probability of being visited than those with smaker
as indicated above. Since the average separation of a node to P .
all other nodes in a network decreases for increasing degree Ek(vk+ Uy)

of the selected node, the average separdtignhfor largen

in SAW’s is lower than the diameter of the network. For Inserting into Eq(10) expressiong8) and(9) for V, and
example, for two of the system sizes represented in Fig. &k and keeping terms linear in/N, one has

(N=2.1x10°® and 7.7x10% we have, for largen, (d,)
=4.60 and 5.88 versus the diameters of 4.77 and 6.07, re-
spectively.

For regular lattices, the mean squared end-to-end distan%ﬁ]d finally
of SAW’s scales for largen as n®’, v being a dimension- ' '
dependent critical exponent. The upper critical dimension for
these walks iD=4 [40], which means that above this di-
mension one has=2, as for Brownian motioriMarkovian
random walks On the other hand, for the SF networks stud-Where
ied here, the mean-squared end-to-end separation scalés as

>, vk

(10

n

~ <k>NE (k-2Q(K),

k

Pn (12)

(12

_ ) -2k

in the thermodynamic limit—i.e., with an exponent1.
This exponent coincides with that correspondingDie 1,

= T (13

reflecting the fact that loops become irrelevant in the considnote that for the networks considered have-0. In fact,

ered networks adl— oo (networks become tree-likeThis

(k¥—2(k)>0 is the condition to have a giant component in a

behavior is, however, not captured by SAW's on finite SFnetwork[41].

networks, for which(dﬁ) converges to a constant, and there-

To calculate the probability distribution for the self-

fore gives a null exponent for sufficiently large intersection length, we consideM, random walks starting

from nodes taken at random. We cbl;(n) the number of
nonreversal SAW's that remain after steps(i.e., those
which did not find any node visited earljerThus, M4(n)

As indicated above, finite-size effects on SAW’s on any”M1(n+1)=p:My(n), and consideringn as a co!’ltinuous
(finite) network will be appreciable as soon as the walks are/ariablex, we have a differential equation féd;(x):
long enough, as a consequence of the presence of loops in

IV. SELF-INTERSECTION LENGTH

. 1 d™M X
the network. Thus, SAW'’s are a suitable tool to probe the — 1 -w—, (14)
large-scale topological structure of complex networks. In My dx N
particular, the probability of a walk intersecting itself will which yields, for integen
depend on the system size, as well as on the topology of the 5
network under consideration. To study this probability, we M =M p(— \L‘”‘_) 1
consider here nonreversal self-avoiding wal®], which 1(n) 0 X N/ (15
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FIG. 3. Fraction of nonreversal SAW’s that survive aftesteps, FIG. 4. Mean self-intersection length as a function of system

without intersecting themselves. Results are plotted for SF networksize, for SF networks witk,=3 and several values of the exponent
with y=3, ky=3, and several system sizds From left to right: 7. From top to bottom:y=5, 3, 2.5, and 2. Symbols are results of
N=3.3x10%,2.6x 104, 7.7x 104, and 2.1x 10°. Solid and dashed numerical simulations and dashed lines were obtained from Eq.
lines indicate results of numerical simulations and analytical calcu{17). Error bars of simulation results are less than the symbol size.
lations, respectively.
exponenty of the degree distribution through the mean val-

In Fig. 3 we present results for the fraction of surviving ues (k) and (k¥). In Fig. 5 we present the mean self-
walks M4(n)/M, for SF networks withy=3. We compare intersection length for SF networks with=2.5 and several
the curves derived from Eq15) (dashed lineswith those values ofk,, as derived from numerical simulations. Differ-
obtained from numerical simulations for networks wkl  entk, values give a uniqu®&l dependence ofl). Thus, the
=3 (solid lineg. Both sets of results agree with one anotherdependence ofl) on k,, which should appear in Eq17)
in the sensitivity region of our numerical procedédewn to  through the dependence @f on ko, is negligible for our
~107°). For largern [and lower M;(n)/Mg] one expects purposes. However, the minimum degigeaffects strongly
terms of higher order in/N to become relevant and EQL5)  other properties of SAW’s, such as the attrition length stud-

to be less reliable. ied in the following section.
The average self-intersection length of these walks can be
obtained agl), with the probability distribution V. ATTRITION LENGTH
b _ V_VE In this section we consider random SAW'’s, which travel
R() =w— ex , (16) . .
N 2N on the network until they arrive at a nodealled hereafter

. . . ) - . the "blocking node}, where they cannot continue because all
which gives the probab|l|ty of returning to a visited site in adjacent nodes have been already visited and are not avail-
stepl. Treatingl as a continuous variable, we replace sums,pjq for the walk. These are kinetic growth walks, as defined
by integrals and find by Maijid et al. [36]. The number of steps of a given walk

N until being blocked will be called the attrition length of the
Iy = o (170  walk and will be denoted..

1000

For largeN and y>2, (k) converges to a finite value and
w~ (k?); therefore, the mean self-intersection length scales
as(ly~ (N/{k?)Y2. For y>3, (k?) does not diverge for large | |y=25 & |
N and then(l)~ VN. Mean self-intersection lengths derived o
from Eq.(17) are shown in Fig. 4, along with those found in @
numerical simulations for several exponept8oth methods 100 ¢
give results agreeing with one another within the error bars o
of the numerical simulations. In general, we fitlg~ N5, I 2
with an exponents that decreases from 0.5 to 0.25 as N
decreases from 3 to 2. From the distribution fagiven by

Eq. (16) one finds a mean-square deviation for the self- 10
intersection length of the walks:?=CN/w, with a constant

C=2-7/2. This means that;/(I)~0.52. N

We note that the probability distributioR(l) (and there- FIG. 5. Mean self-intersection leng(h as a function of system
fore the average valud)) is independent of the minimum sjze for SF networks withy=2.5 and several values of the mini-
degreek,. It depends, apart from the system size, on themum degree,: squaresk,=3; circles,ky=>5; triangles ky=7.

<l>

102 10? 104 10° 108
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We now calculate the average attrition length of kinetic
growth walks and obtain its asymptotic dependence for large
system sizeN. To find this average length we will derive a
probability distribution forL in a way similar to that em-
ployed above for the self-intersection length. With this pur-
pose we note that a blocking node for a kinetic growth walk
is characterized by the fact that all its links except oem-
ployed for an incoming stepconnect it with nodes previ-
ously visited. Then, for step of a walk and for a given
degreek, the average numbeM, of blocking nodes present
in the network is given by the binomial formula

Ny, = kN2 - py) = KN, (18)

where p, (<1 for n<N) is the average fraction of links S N N

joining a generic node with nodes visited earlier, as given in FIG. 6. Distribution probabilityZ(L) for the attrition length_ of
Eq. (12). This means thaNlL~k1‘7pﬁ‘1, and then one has Kkinetic growth walks on scale-free networks wigt+ 3, ky=3, and
N <N, for k>ko. Thus, the average number of links con- different system sizes. From left to rightN=3.3x10% 2.6
necting thenth node in a walk with nodes already visited

X 10%,7.7% 10% and 2.1x 10°. Solid and dashed lines indicate re-
coincides, within our approximation, witNi;O. (Note that

sults of numerical simulations and analytical calculations,
. . . respectively.
there is one such link available for each of thm{<§ nodes)

_ The probab|I|t_y of flndlpg a blocking node in SIS the maximum length of kinetic growth walks in scale-free
given by the ratiod,==Ny/Neng WhereNen=(k)N is the  eyorks. The distributio(L) is displayed in Fig. 6 fory
total number of ends of links in the network. Then, to order:3, ko=3, and different system sizes. The dashed lines were
n/N, we haveq,~Ny /(k)N. This approximation relies on  gnhiained from Eq(22), and the solid lines were derived from
the fact thatp,=wn/N<1, which may be unfulfilled when numerical simulations. Both sets of results follow the same
the minimum degree, is large and the average attrition trend, but the numerical results seem to be larger than the
length can be on the order of the system d\zgsee below.  analytical ones for large. This difference is larger than the

To derive the probability distribution for the attrition noise of the simulation results and shows the validity limit of
lengthL, we consideM kinetic growth walks starting from  our approximation for largé.
nodes taken at random. We cidl,(n) the number of walks From the distributiorZ(L) we obtain an average attrition
that survive aften steps. Then, the number of walks finish- |ength
ing at stepn (for which n is a blocking ong is My(n)

L)

-M,(n+1)=q,M,(n). Considering agaim as a continuous
variablex, one has a differential equation fdf,(x),

1 dm, __Y<z>k°‘1 19
M, dx N/
with the network-dependent constant
N
ko Ko g
Y= 2wkt 20
N <k>W (20)
andw given in Eq.(13). Then, for integen we have
n \ko
My(n)=Mgexp = | — | |, (21
Xo

which gives the number of walks that remain aftesteps;
i.e., Mx(n)/Mg is the probability of surviving to lengtim.
Here X, is a number(dimensionless lengjhgiven byxﬁg0
=koNko~1/Y.

Therefore, the probability distributiod(L) for the attri-
tion length of these walks is

b8 of-(3]

(22)

Xo 1)
~—I| — ,
L= <ko

I' being Euler's gamma function. Thus, the dependence of
(L) on N for large systems is controlled by. To obtain the
asymptotic dependence af, we note thatY in Eg. (20)
scales fory>2 asY~wk 1 becauseNkO/ N converges to a
constant for largeN. In addition,w~ (k?), and therefore<(‘§°
~ (N/{k?)%™1, For y>3, (k% converges to a finite value as
N—c and the average attrition length increases(hs
~N1%0, For y=3, (k¥ ~In N and{L) ~ (N/In N)1~*o This
means that for a given system size, the average number of
nodes visited in kinetic growth walks rises with increasing
ko, as a consequence of the increase in the average degree
(k). For y<3, we have(L)~ N?, with an exponent that
decreases frorh—1/k, to (1-1/ky)/2 asy decreases from 3
to 2.

In Fig. 7 we show the average attrition length) as a
function of the system sizN for y=3. Symbols correspond
to results of numerical simulations for several values of the
minimum degreds,, and dashed lines were obtained by using
Eq. (23). For the largesk,, (L) derived from simulations
increases withN slightly faster than the analytical result.

(23

This distribution is strongly dependent on the minimum de-This difference is not strange if one observes thatkfsr9,
greek,, since nodes with this degree are in fact controlling(L) is on the order oN (in fact, for N=1C, N/(L)~3), and
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10° r r r As a result, we find that the efficiency of SAW'’s to ex-
k=9 / , plore scale-free networks increases for increasing exponent
v =3 I ;/ v. This is a consequence of the fact that for a given system
. o,”j size N, the fraction of nodes with high degree increases for
10°F /9,9’ ra decreasingy. High-degree nodes are visited more probably
4 5/’ than low-degree ones, and once visited, the former are more
v P effective to block a SAW in later stegthey have more con-
0l /;i{ o ,,/" 3 | qections, thus reducing the mean self-intersection and attri-
/;/n/,ﬂ tion lengths.
7/
/,”/‘//,
) / «'. . . VI. CONCLUSIONS
10 12 10® 10* 10° 106

Self-avoiding walks provide us with an adequate tool to
study the long-range characteristics of SF networks. In par-

FIG. 7. Mean attrition lengtiL) as a function of system size for ticular, they allow us to study the quality of a network to be
SF networks withy=3 and several values &. From top to bot- explored without returning to sites alrgady visited. For large
tom: ky=9, 5, and 3. Symbols are results of numerical simulationshetworks, the number of SAW's increases ag/s,;
and dashed lines were obtained by using B§). Error bars of ~(k?)/(k)-1, provided thatn<N. For a givenn, s, de-
simulation results are less than the symbol size. creases with decreasing system size, as a consequence of the

) . presence of loops in the networks. These finite-size effects
our assumption that<N for all steps of SAW's is not true. - 5tect strongly the maximum length of kinetic growth walks
However, even in this case E¢23) gives a rather good ., ccale-free networks.
approximation for_ the average length (seg F'g‘ 7‘_ We have calculated self-intersection and attrition lengths

In order to define strategies to search in this kind of nety,, \,qing an approximate probabilistic method, which yields
\évf?éléil/étn(Iassscgirhéha:ogggssTmtg thla\évl s'[fgtfeielgﬁ;stgg results in good agreement with those derived from numerical
SAW'’s have to includpe additibnal cénditions to imgprove their&r'lnmatlons' Both the average self-intersection length and at-

trition length scale as a power of the system $\zd-or the

efficiency. Along these lines, Adamiet al. [28] have pro- ean self-intersection length of nonreversal SAW’s we have
posed an algorithm based on SAW'’s that prefer high-degre )\~ NA, with 8 depending on the exponentof the degree

nodes to low-degree ones. In any case, the long-range prop/ '~ ' ,
erties of pure SAW’s give us direct insight into the structuredistribution. In particular, fory>3 one has3=0.5 and de-

of SF networks, further than the local neighborhood of acreases ay is lowered. The length of kinetic growth walks
node, where the structure of links is tree like. On a largein scale-free networks is limited by attrition of the paths, and
scale, one always finds loops sooner or later in finite netthe mean attrition length follows a dependends ~ N¢,
works, which is in fact probed by SAW's. In particular, the with « depending ony and the minimum degrek,. For y
average self-intersection length) given in Eq.(17) is a >3, one hasyr=1-1/k,. This dependence of the exponent
measure of the typical size of loops in equilibrium SF net-on k, is remarkable, reflecting the fact that the length of
works. The presence of loops in a network is responsible foSAW'’s is limited by attrition at sites with the minimum de-
attrition of the walks. Then, the mean attrition lendlhh  greek,.
given in Eq.(23) is a measure of the long-range “openness”

of a network(the longer{L), the less loops contain a net-
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