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Several kinds of walks on complex networks are currently used to analyze search and navigation in different
systems. Many analytical and computational results are known for random walks on such networks. Self-
avoiding walks(SAW’s) are expected to be more suitable than unrestricted random walks to explore various
kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks,
characterized by a degree distributionPskd,k−g. In the limit of large networks(system sizeN→`), the
average numbersn of SAW’s starting from a generic site increases asmn, with m=kk2l / kkl−1. For finiteN, sn

is reduced due to the presence of loops in the network, which causes the emergence of attrition of the paths.
For kinetic growth walks, the average maximum lengthkLl increases as a power of the system size:kLl
,Na, with an exponenta increasing as the parameterg is raised. We discuss the dependence ofa on the
minimum allowed degree in the network. A similar power-law dependence is found for the mean self-
intersection length of nonreversal random walks. Simulation results support our approximate analytical
calculations.
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I. INTRODUCTION

Many natural and artificial systems have a network struc-
ture, where nodes represent typical system units and edges
represent interactions between connected pairs of units.
Thus, complex networks are currently used to model several
kinds of real-life systems(social, biological, technological,
economic) and to study different processes taking place on
them [1–3]. In recent years, new models of complex net-
works have been designed to explain empirical data in sev-
eral fields. This is the case of the so-called small-world[4]
and scale-free networks[5], which incorporate various as-
pects of real systems. These complex networks provide us
with the underlying topological structure to analyze pro-
cesses such as spread of infections[6,7], signal propagation
4,8, and random spreading of information[9,10]. They have
been also employed to study statistical physical problems as
percolation[6,11] and cooperative phenomena[12,13].

In a scale-free(SF) network the degree distributionPskd,
wherek is the number of links connected to a node, has a
power-law decayPskd,k−g. This kind of networks have
been found in social systems[14], for protein interactions
[15], in the internet[16], and in the World Wide Web[17]. In
both natural and artificial networks, the exponentg control-
ling the degree distribution is usually in the range 2,g,3
[3,18]. The origin of such power-law degree distributions
was addressed by Barabási and Albert[5], who argued that
two ingredients are sufficient to explain the scale-free char-
acter of many real-life networks, namely: growth and prefer-
ential attachment. They found that the combination of both
criteria yields nonequilibrium SF networks with an exponent
g=3. One can also study equilibrium SF networks, defined
as statistical ensembles of random networks with a given
degree distributionPskd,k−g [3], for which one can analyze
several properties as a function of the exponentg. SF net-
works display the so-called small-world effect, and they have

been found to be ultrasmall, in the sense that the mean dis-
tance between sites increases with the network sizeN slower
than logN [19].

Social networks form the substrate where dynamical pro-
cesses such as disease propagation and information spread-
ing take place. These networks have the property of being
searchable—i.e., people(nodes in a network) can direct mes-
sages through their network of acquaintances to reach a dis-
tant specific target in only a few steps[20–22]. It is clear that
the structure of such networks will play an important role in
these dynamical processes, which are usually studied by
means of stochastic dynamics and random walks. Several
characteristics of random walks on complex networks have
been analyzed in connection with diffusion and exploration
processes[23–25]. In this context, it is known that some
processes, such as navigation and exploratory behavior are
neither purely random nor totally deterministic[26] and can
be described by walks on graphs[27,28].

Self-avoiding walks(SAW’s) can be more effective than
unrestricted random walks in exploring a network, since they
cannot return to sites already visited. This property has been
used by Adamicet al. [28] to define local search strategies in
scale-free networks. However, the self-avoiding property
causes attrition of the paths, in the sense that a large fraction
of paths generated in a stochastic manner have to be aban-
doned because they are overlapping. This can be a serious
limitation to explore networks with pure SAW’s.

SAW’s have been traditionally used to model structural
and dynamical properties of macromolecules[29,30]. They
are also useful to characterize complex crystal structures[31]
and to study critical phenomena in lattice models[32]. Uni-
versal constants for SAW’s on regular lattices have been dis-
cussed by Privmanet al. [33]. In our context of complex
networks, the asymptotic properties of SAW’s have been
studied recently in small-world networks[34].

Here we study long-range properties of SAW’s on equi-
librium scale-free networks and discuss the “attrition prob-
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lem.” The number of surviving walks to a given lengthn is
obtained by an approximate analytical procedure, and the
results are compared with those obtained from numerical
simulations. In particular, we find that the number of surviv-
ing walks aftern steps scales as a power of the system size
N. We note that the term “length” is employed throughout
this paper to indicate the(dimensionless) number of steps of
a walk, as usually done in the literature on networks[3].

The paper is organized as follows. In Sec. II we give some
definitions and concepts related to SAW’s, along with details
of our computational method. In Sec. III we calculate the
number and end-to-end separation of SAW’s in(uncorre-
lated) scale-free networks. In Sec. IV we analyze the length
at which nonreversal random walks intersect themselves in
these networks(self-intersection length), and in Sec. V we
calculate the average attrition length of kinetic growth
SAW’s, at which they cannot continue without violating the
self-avoidance condition. The paper closes with some con-
clusions in Sec. VI.

II. BASIC DEFINITIONS AND METHOD

A self-avoiding walk is defined as a walk along the bonds
of a given network which can never intersect itself. The walk
is restricted to moving to a nearest-neighbor site during each
step, and the self-avoiding condition constrains the walk to
occupy only sites which have not been previously visited in
the same walk.

The simplest procedure to obtain SAW’s consists just in
generating ordinary random walks and stop when they arrive
at a node already visited. A problem with this sampling al-
gorithm in regular lattices is the exponentially rapid attrition
for long walks, since the probability of ann-step walk being
self-avoiding behaves for largen as e−ln, where l is the
so-called attrition constant[35]. Due to this limitation, more
sophisticated schemes based on Monte Carlo sampling, have
been employed to generate SAW’s with the correct weight
and to obtain ensemble averages of several quantities[35].
This has allowed, for example, the modeling of the equilib-
rium statistics of linear polymers in dilute solutions. In gen-
eral, for networks including nodes with different degrees
(contrary to usual regular lattices), sampling by using simple
random walks introduces a bias in the weight of different
SAW’s.

One can also consider kinetically grown SAW’s, which
can be more adequate to analyze dynamic processes. Such
walks are well suited to study, for example, search or navi-
gation processes on networks, where they are assumed to
grow step by step in a temporal sequence. In the following
we will consider two kinds of growing walks. The first kind
will be “nonreversal” self-avoiding walks[35]. In these
walks one randomly chooses the next step from among the
neighboring nodes, excluding the previous one. If it happens
that one chooses an already visited node, then the walk stops
(see Fig. 1). These walks will allow us to study the “self-
intersection length”(see Sec. IV). The second kind of walks
considered here are kinetic growth walks[36], in which one
randomly chooses the next step among the neighboring un-
visited sites and stops growing when none are available.

These walks were studied to describe the irreversible growth
of linear polymers[36] and will allow us to consider the
“attrition length” for a walk on a given network(see Sec. V).
Note that kinetic growth walks are less sensitive to attrition
than nonreversal SAW’s, since in the former the walker al-
ways escapes whenever a way exists.

We consider SF networks with degree distributionPskd
,k−g. They are characterized, apart from the exponentg and
the system sizeN, by the minimum degreek0, which affects
markedly some characteristics of SAW’s in these networks
(see below). We assume thatPskd=0 for k,k0. Our net-
works are uncorrelated, in the sense that degrees of nearest
neighbors are statistically independent. This means that the
joint probability Psk,k8d fulfills the relation[3]

Psk,k8d =
kk8

kkl2PskdPsk8d. s1d

For the numerical simulations we have generated net-
works with several values ofg, k0, and N. To generate a
network, once we define the number of nodes,Nk, with de-
greek, we ascribe a degree to each node according to the set
hNkj and then connect at random ends of links(giving a total
of L=okkNk/2 connections) with the conditions that(i) no
two nodes can have more than one bond connecting them
and(ii ) no node can be connected by a link to itself. We have
checked that networks generated in this way are uncorre-
lated; i.e., they fulfill Eq.(1). All networks considered here
contain a single component; i.e., any node in a network can
be reached from any other node by traveling through a finite
number of links. For each set of parameters(g, k0, N), we
considered different network realizations, and for a given
network we selected at random the starting nodes for the
SAW’s. For each considered parameter set, the total number
of generated SAW’s amounted to about 53105.

For regular lattices, the numbersn of different SAW’s
starting from a generic site has an asymptotic dependence for
large n [33]: sn,nG−1mn, where G is a critical exponent
which depends on the lattice dimension andm is the so-
called “connective constant” or effective coordination num-

FIG. 1. Schematic diagram showing a nonreversal random walk
of lengthn=5 on the realization of a random graph. Open and solid
circles represent unvisited and visited nodes, respectively. The start-
ing node is indicated by a larger circle. The nonreversal condition
allows in principle for the next(sixth) step three possible nodes
(denotedA, B, andC). The self-avoiding condition excludes nodeC
for the sixth step. For a nonreversal SAW one chooses among nodes
A, B, and C. If C is selected, then the walk stops. For a kinetic
growth walk, one choosesA or B.
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ber of the considered lattice[37]. In general, for a lattice
with connectivity k0, one hasmøk0−1. This parameterm
can be obtained as the limit

m = lim
n→`

sn

sn−1
. s2d

The connective constant depends upon the particular topol-
ogy of each lattice and has been determined very accurately
for two- and three-dimensional lattices[35].

For Poissonian and scale-free networks the number of
SAW’s of lengthn depends on the considered starting node
of the network. In the sequel we will callsn the average
number of SAW’s of lengthn—i.e., the mean value obtained
(for eachn) by averaging over the network sites and over
different network realizations(for given g, k0, and N). For
Erdös-Rényi random networks with Poissonian distribution
of degrees, one hassn

rd=kkln [34], and therefore the connec-
tive constant ism=kkl. In connection with this, we note that
for a Bethe lattice(or Cayley tree) with connectivityk0, the
number of SAW’s is given bysn

BL=k0sk0−1dn−1, and one has
mBL=k0−1.

III. GENERAL CHARACTERISTICS OF SAW’s

A. Number of walks

We calculate first the average number,rn, of different
n-step unrestricted walks starting from a node chosen at ran-
dom. One trivially hasr1=kkl. To calculatern for n.1, one
needs the degree distribution for nodes at which one arrives
following a random edge. Thus, given a generic node and a
link starting on it, we callQskd the degree distribution for the
other end of the link. The probability of reaching a node with
connectivityk is proportional tok; therefore,

Qskd =
k

kkl
Pskd, s3d

wherekkl in the denominator is a normalization factor. Then,
the average number of two-step random walks is given by
r2=r1kklQ, where the subscriptQ indicates that the average
value is taken with the probability distributionQskd. We find
r2=kk2l [average values without subscripts are taken with the
degree distributionPskd]. Forn.2 we havern=rn−1kklQ and
then

rn = kklS kk2l
kkl

Dn−1

. s4d

We have checked that this expression forrn and those given
below for SAW’s coincide with those derived by using a
generating function for the degree distribution[28,38].

We now calculate the average numbersn of different self-
avoiding walks ofn steps starting from a node taken at ran-
dom in uncorrelated networks. We will first consider the case
n/N→0 (thermodynamic limit). For n=1, one hass1=kkl.
For n.1 we take into account that eachsn−1d-step walk
arriving at a node with degreek gives rise tok−1 n-step
walks. Thus, we havesn=sn−1kk−1lQ, which yields

sn = kklS kk2l
kkl

− 1Dn−1

. s5d

Then, the connective constantm` for N→` is given by

m` =
kk2l
kkl

− 1. s6d

This is consistent with the fact that uncorrelated networks are
locally tree like and the ratiokk2l / kkl is the average degree
of a randomly chosen end node of a randomly chosen link
[3]. For SF networks withgø3, m diverges asN→`, as a
consequence of the divergence ofkk2l. For g.3, we can
approximate the average values in Eq.(6) by replacing sums
by integrals and find

m` < k0
g − 2

g − 3
− 1. s7d

Note that the ratiosn/sn−1 does not depend onn for sys-
tem sizeN→`. This is equivalent to assume that nodes in
different steps of a nonreversal random walk are different.
This means, in other words, that the probability of finding
loops with n8øn in an n-step walk is negligible. For finite
networks, however, there will appear loops of any size[39],
introducing corrections to the number of SAW’s, andsn will
be lower than given by Eq.(5). These corrections will be of
order n/N for n/N!1. The effects of this reduction in the
number of random SAW’s in scale-free networks will be
considered in Secs. IV and V.

As indicated above, the number of SAW’s on regular lat-
tices scales for largen as sn,nG−1mn, whereG is a critical
exponent which depends on the lattice dimensionD, and one
hasG=1 for D.4 [33,35]. For the SF networks studied here
we find sn,m`

n , indicating thatG=1, the same exponent as
for regular lattices in many dimensions.

B. End-to-end separation

For walks on regular lattices, one usually considers an
end-to-end Euclidean distance. Our SF networks, however,
lack a metric and a true distance is not defined. Thus, we will
consider the end-to-end separation for SAW’s on SF net-
works as a function of the walk lengthn, the separation
between two nodes being the number of links along the
shortest path connecting them. In Fig. 2 we present the av-
erage separationkdnl from the nth node in a SAW to the
starting onesn=0d for SF networks withg=3, k0=3, and
several sizesN. This average separationkdnl increases first
linearly with n and finally saturates to a finite value that
depends on the system size. This is logical if one takes into
account that these networks are locally tree like and for the
first steps the minimum separation between nodesn and 0 is
dn=n. As n increases, there appear shorter ways connecting
nodesn and 0, and finallykdnl becomes independent ofn.
This saturation for relatively small values ofn is consistent
with the small average separation between pairs of nodes
(diameter) in this kind of networks. In fact, it is known that
the diameter increases slowly as lnN/ ln ln N for g=3 and
even more slowly as ln lnN for g,3 [19]. The limit of kdnl
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for large n in our SAW’s is lower than the diameter of the
considered networks, because nodes with largerk have a
higher probability of being visited than those with smallerk,
as indicated above. Since the average separation of a node to
all other nodes in a network decreases for increasing degree
of the selected node, the average separationkdnl for largen
in SAW’s is lower than the diameter of the network. For
example, for two of the system sizes represented in Fig. 2
(N=2.13103 and 7.73104) we have, for largen, kdnl
=4.60 and 5.88 versus the diameters of 4.77 and 6.07, re-
spectively.

For regular lattices, the mean squared end-to-end distance
of SAW’s scales for largen as n2n, n being a dimension-
dependent critical exponent. The upper critical dimension for
these walks isD=4 [40], which means that above this di-
mension one hasn= 1

2, as for Brownian motion(Markovian
random walks). On the other hand, for the SF networks stud-
ied here, the mean-squared end-to-end separation scales asn2

in the thermodynamic limit—i.e., with an exponentn=1.
This exponent coincides with that corresponding toD=1,
reflecting the fact that loops become irrelevant in the consid-
ered networks asN→` (networks become tree-like). This
behavior is, however, not captured by SAW’s on finite SF
networks, for whichkdn

2l converges to a constant, and there-
fore gives a null exponent for sufficiently largen.

IV. SELF-INTERSECTION LENGTH

As indicated above, finite-size effects on SAW’s on any
(finite) network will be appreciable as soon as the walks are
long enough, as a consequence of the presence of loops in
the network. Thus, SAW’s are a suitable tool to probe the
large-scale topological structure of complex networks. In
particular, the probability of a walk intersecting itself will
depend on the system size, as well as on the topology of the
network under consideration. To study this probability, we
consider here nonreversal self-avoiding walks[35], which

stop when they try to visit a node already visited in the same
walk. The number of steps of a given walk before intersect-
ing itself will be called the “self-intersection length” of the
walk and will be denotedl.

To obtain the mean self-intersection lengthkll of these
walks, we will calculate the probability that a walk stops at
stepn s!Nd. Let us consider for the moment nodes with a
given degreek. The average number of nodes with degreek
visited aftern steps is

Vk = nQskd, s8d

and the average number of those yet unvisited is

Uk = Nk − Vk = NPskd − nQskd. s9d

Then, the probability of reaching in stepn an unvisited node
is uk~kUk and that of finding one already visited isvk~ sk
−2dVk. This is due to the fact that a visited node hask−2
possible links to reach it, as two of its connections are not
available because they were employed earlier: one for an
incoming step and one for an outgoing step. Therefore, the
probability pn of finding in stepn a visited node with any
degree is

pn =
ok

vk

ok
svk + ukd

. s10d

Inserting into Eq.(10) expressions(8) and (9) for Vk and
Uk and keeping terms linear inn/N, one has

pn <
n

kklNo
k

sk − 2dQskd, s11d

and, finally,

pn < w
n

N
, s12d

where

w =
kk2l − 2kkl

kkl2 . s13d

Note that for the networks considered herew.0. In fact,
kk2l−2kkl.0 is the condition to have a giant component in a
network [41].

To calculate the probability distribution for the self-
intersection lengthl, we considerM0 random walks starting
from nodes taken at random. We callM1snd the number of
nonreversal SAW’s that remain aftern steps (i.e., those
which did not find any node visited earlier). Thus, M1snd
−M1sn+1d=pnM1snd, and consideringn as a continuous
variablex, we have a differential equation forM1sxd:

1

M1

dM1

dx
= − w

x

N
, s14d

which yields, for integern

M1snd = M0 expS−
w

2

n2

N
D . s15d

FIG. 2. Average separation between thenth node and the start-
ing one, for kinetically grown SAW’s on scale-free networks with
g=3 andk0=3. Symbols correspond to different system sizes. From
bottom to top:N=2.13103,9.63103,7.73104 and 6.23105. Dot-
ted lines are guides to the eye.
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In Fig. 3 we present results for the fraction of surviving
walks M1snd /M0 for SF networks withg=3. We compare
the curves derived from Eq.(15) (dashed lines) with those
obtained from numerical simulations for networks withk0
=3 (solid lines). Both sets of results agree with one another
in the sensitivity region of our numerical procedure(down to
,10−6). For larger n [and lower M1snd /M0] one expects
terms of higher order inn/N to become relevant and Eq.(15)
to be less reliable.

The average self-intersection length of these walks can be
obtained askll, with the probability distribution

Rsld = w
l

N
expS−

w

2

l2

N
D , s16d

which gives the probability of returning to a visited site in
step l. Treatingl as a continuous variable, we replace sums
by integrals and find

kll <ÎpN

2w
. s17d

For largeN and g.2, kkl converges to a finite value and
w,kk2l; therefore, the mean self-intersection length scales
askll,sN/ kk2ld1/2. For g.3, kk2l does not diverge for large
N and thenkll,ÎN. Mean self-intersection lengths derived
from Eq.(17) are shown in Fig. 4, along with those found in
numerical simulations for several exponentsg. Both methods
give results agreeing with one another within the error bars
of the numerical simulations. In general, we findkll,Nb,
with an exponentb that decreases from 0.5 to 0.25 asg
decreases from 3 to 2. From the distribution forl given by
Eq. (16) one finds a mean-square deviation for the self-
intersection length of the walks:sl

2=CN/w, with a constant
C=2−p /2. This means thatsl / kll<0.52.

We note that the probability distributionRsld (and there-
fore the average valuekll) is independent of the minimum
degreek0. It depends, apart from the system size, on the

exponentg of the degree distribution through the mean val-
ues kkl and kk2l. In Fig. 5 we present the mean self-
intersection length for SF networks withg=2.5 and several
values ofk0, as derived from numerical simulations. Differ-
ent k0 values give a uniqueN dependence ofkll. Thus, the
dependence ofkll on k0, which should appear in Eq.(17)
through the dependence ofw on k0, is negligible for our
purposes. However, the minimum degreek0 affects strongly
other properties of SAW’s, such as the attrition length stud-
ied in the following section.

V. ATTRITION LENGTH

In this section we consider random SAW’s, which travel
on the network until they arrive at a node(called hereafter
the “blocking node”), where they cannot continue because all
adjacent nodes have been already visited and are not avail-
able for the walk. These are kinetic growth walks, as defined
by Majid et al. [36]. The number of steps of a given walk
until being blocked will be called the attrition length of the
walk and will be denotedL.

FIG. 3. Fraction of nonreversal SAW’s that survive aftern steps,
without intersecting themselves. Results are plotted for SF networks
with g=3, k0=3, and several system sizesN. From left to right:
N=3.33103,2.63104,7.73104, and 2.13105. Solid and dashed
lines indicate results of numerical simulations and analytical calcu-
lations, respectively.

FIG. 4. Mean self-intersection lengthkll as a function of system
size, for SF networks withk0=3 and several values of the exponent
g. From top to bottom:g=5, 3, 2.5, and 2. Symbols are results of
numerical simulations and dashed lines were obtained from Eq.
(17). Error bars of simulation results are less than the symbol size.

FIG. 5. Mean self-intersection lengthkll as a function of system
size for SF networks withg=2.5 and several values of the mini-
mum degreek0: squares,k0=3; circles,k0=5; triangles,k0=7.
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We now calculate the average attrition length of kinetic
growth walks and obtain its asymptotic dependence for large
system sizeN. To find this average length we will derive a
probability distribution forL in a way similar to that em-
ployed above for the self-intersection length. With this pur-
pose we note that a blocking node for a kinetic growth walk
is characterized by the fact that all its links except one(em-
ployed for an incoming step) connect it with nodes previ-
ously visited. Then, for stepn of a walk and for a given
degreek, the average numberNk8 of blocking nodes present
in the network is given by the binomial formula

Nk8 = kNkpn
k−1s1 − pnd < kNkpn

k−1, s18d

where pn (!1 for n!N) is the average fraction of links
joining a generic node with nodes visited earlier, as given in
Eq. (12). This means thatNk8,k1−gpn

k−1, and then one has
Nk8!Nk0

8 for k.k0. Thus, the average number of links con-
necting thenth node in a walk with nodes already visited
coincides, within our approximation, withNk0

8 . (Note that
there is one such link available for each of thoseNk0

8 nodes.)
The probability of finding a blocking node in stepn is

given by the ratioqn=okNk8 /Nend, whereNend=kklN is the
total number of ends of links in the network. Then, to order
n/N, we haveqn<Nk0

8 / kklN. This approximation relies on
the fact thatpn=wn/N!1, which may be unfulfilled when
the minimum degreek0 is large and the average attrition
length can be on the order of the system sizeN (see below).

To derive the probability distribution for the attrition
lengthL, we considerM0 kinetic growth walks starting from
nodes taken at random. We callM2snd the number of walks
that survive aftern steps. Then, the number of walks finish-
ing at stepn (for which n is a blocking one) is M2snd
−M2sn+1d=qnM2snd. Considering againn as a continuous
variablex, one has a differential equation forM2sxd,

1

M2

dM2

dx
= − YS x

N
Dk0−1

, s19d

with the network-dependent constant

Y =
Nk0

N

k0

kkl
wk0−1 s20d

andw given in Eq.(13). Then, for integern we have

M2snd = M0 expF− S n

x0
Dk0G , s21d

which gives the number of walks that remain aftern steps;
i.e., M2snd /M0 is the probability of surviving to lengthn.
Here x0 is a number(dimensionless length) given by x0

k0

=k0N
k0−1/Y.

Therefore, the probability distributionZsLd for the attri-
tion length of these walks is

ZsLd =
k0

L
S L

x0
Dk0

expF− S L

x0
Dk0G . s22d

This distribution is strongly dependent on the minimum de-
greek0, since nodes with this degree are in fact controlling

the maximum length of kinetic growth walks in scale-free
networks. The distributionZsLd is displayed in Fig. 6 forg
=3, k0=3, and different system sizes. The dashed lines were
obtained from Eq.(22), and the solid lines were derived from
numerical simulations. Both sets of results follow the same
trend, but the numerical results seem to be larger than the
analytical ones for largeL. This difference is larger than the
noise of the simulation results and shows the validity limit of
our approximation for largeL.

From the distributionZsLd we obtain an average attrition
length

kLl <
x0

k0
GS 1

k0
D , s23d

G being Euler’s gamma function. Thus, the dependence of
kLl on N for large systems is controlled byx0. To obtain the
asymptotic dependence ofx0, we note thatY in Eq. (20)
scales forg.2 asY,wk0−1, becauseNk0

/N converges to a
constant for largeN. In addition,w,kk2l, and thereforex0

k0

,sN/ kk2ldk0−1. For g.3, kk2l converges to a finite value as
N→` and the average attrition length increases askLl
,N1−1/k0. For g=3, kk2l, ln N andkLl,sN/ ln Nd1−1/k0 This
means that for a given system size, the average number of
nodes visited in kinetic growth walks rises with increasing
k0, as a consequence of the increase in the average degree
kkl. For g,3, we havekLl,Na, with an exponenta that
decreases from1−1/k0 to s1−1/k0d /2 asg decreases from 3
to 2.

In Fig. 7 we show the average attrition lengthkLl as a
function of the system sizeN for g=3. Symbols correspond
to results of numerical simulations for several values of the
minimum degreek0, and dashed lines were obtained by using
Eq. (23). For the largestk0, kLl derived from simulations
increases withN slightly faster than the analytical result.
This difference is not strange if one observes that fork0=9,
kLl is on the order ofN (in fact, for N=105, N/ kLl<3), and

FIG. 6. Distribution probabilityZsLd for the attrition lengthL of
kinetic growth walks on scale-free networks withg=3, k0=3, and
different system sizes. From left to right:N=3.33103,2.6
3104,7.73104, and 2.13105. Solid and dashed lines indicate re-
sults of numerical simulations and analytical calculations,
respectively.
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our assumption thatn!N for all steps of SAW’s is not true.
However, even in this case Eq.(23) gives a rather good
approximation for the average lengthkLl (see Fig. 7).

In order to define strategies to search in this kind of net-
works, it is clear that nodes with a low degree limit the
effectiveness of the process. Thus, actual strategies based on
SAW’s have to include additional conditions to improve their
efficiency. Along these lines, Adamicet al. [28] have pro-
posed an algorithm based on SAW’s that prefer high-degree
nodes to low-degree ones. In any case, the long-range prop-
erties of pure SAW’s give us direct insight into the structure
of SF networks, further than the local neighborhood of a
node, where the structure of links is tree like. On a larger
scale, one always finds loops sooner or later in finite net-
works, which is in fact probed by SAW’s. In particular, the
average self-intersection lengthkll given in Eq. (17) is a
measure of the typical size of loops in equilibrium SF net-
works. The presence of loops in a network is responsible for
attrition of the walks. Then, the mean attrition lengthkLl
given in Eq.(23) is a measure of the long-range “openness”
of a network(the longerkLl, the less loops contain a net-
work). In this sense, our SF networks become more open as
their sizeN increases and eventually are loop-free(or tree
like) in the thermodynamic limit, where bothkll and kLl
diverge to infinity.

As a result, we find that the efficiency of SAW’s to ex-
plore scale-free networks increases for increasing exponent
g. This is a consequence of the fact that for a given system
sizeN, the fraction of nodes with high degree increases for
decreasingg. High-degree nodes are visited more probably
than low-degree ones, and once visited, the former are more
effective to block a SAW in later steps(they have more con-
nections), thus reducing the mean self-intersection and attri-
tion lengths.

VI. CONCLUSIONS

Self-avoiding walks provide us with an adequate tool to
study the long-range characteristics of SF networks. In par-
ticular, they allow us to study the quality of a network to be
explored without returning to sites already visited. For large
networks, the number of SAW’s increases assn/sn−1
<kk2l / kkl−1, provided thatn!N. For a givenn, sn de-
creases with decreasing system size, as a consequence of the
presence of loops in the networks. These finite-size effects
affect strongly the maximum length of kinetic growth walks
on scale-free networks.

We have calculated self-intersection and attrition lengths
by using an approximate probabilistic method, which yields
results in good agreement with those derived from numerical
simulations. Both the average self-intersection length and at-
trition length scale as a power of the system sizeN. For the
mean self-intersection length of nonreversal SAW’s we have
kll,Nb, with b depending on the exponentg of the degree
distribution. In particular, forg.3 one hasb=0.5 and de-
creases asg is lowered. The length of kinetic growth walks
in scale-free networks is limited by attrition of the paths, and
the mean attrition length follows a dependencekLl,Na,
with a depending ong and the minimum degreek0. For g
.3, one hasa=1−1/k0. This dependence of the exponenta
on k0 is remarkable, reflecting the fact that the length of
SAW’s is limited by attrition at sites with the minimum de-
greek0.
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